Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1812-1822, 2020.
Article in Chinese | WPRIM | ID: wpr-825150

ABSTRACT

Network pharmacology and bioinformatics technology were used to predict the mechanism of action of Fuzi-Lizhong pill (FLP) in the treatment of ulcerative colitis (UC). 26 components (23 prototype compounds and 3 metabolites) in the blood of FLP were selected as the research objects. PharmMapper database, SwissTargetPrediction platform, GeneCards and OMIM database were used to screen and predict potential targets of FLP in blood. The protein-protein interaction network model was constructed by using String database and Cytoscape software. DAVID platform, KEGG and Reactome databases were used for GO analysis and pathway analysis of potential targets. Network of drug ingredients-targets-pathways was constructed by Cytoscape software. AutoDock vina software was used to dock the molecules of the absorbed ingredients of FLP in blood with the key targets. 82 potential targets of FLP for treatment of UC were obtained. Potential targets mainly involve biological processes such as response to organic substance, regulation of apoptosis, regulation of programmed cell death, which played roles in the treatment of UC by adjusting pathways in cancer, Colorectal cancer, Vascular endothelial growth factor signaling pathway, Mitogen-activated protein kinase signaling pathway, arachidonic acid metabolism and the other signal pathways. From the perspective of network pharmacology, this study predicted the mechanisms of action of FLP in treating UC, indicating that FLP in treating UC had the characteristics of multiple ingredients, multiple targets and multiple pathways, which laid a foundation for further research.

2.
China Journal of Chinese Materia Medica ; (24): 952-958, 2018.
Article in Chinese | WPRIM | ID: wpr-690534

ABSTRACT

To preliminarily investigate the dissolution behavior of Fuzi Lizhong pill, provide the basis for its quality control and lay foundation for dissolution behavior by determining the dissolution rate of liquiritin and glycyrrhizic acid. High-performance liquid chromatography (HPLC) method for simultaneous content determination of the two active ingredients of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was established; The dissolution amount of these two active ingredients in fifteen batches of Fuzi Lizhong pill from five manufacturers was obtained at different time points, and then the cumulative dissolution rate was calculated and cumulative dissolution curve was drawn. The similarity of cumulative dissolution curve of different batches was evaluated based on the same factory, and the similarity of cumulative dissolution curve of different factories was evaluated based on the same active ingredients. The dissolution model of Fuzi Lizhong pill based on two kinds of active ingredients was established by fitting with the dissolution data. The best dissolution medium was 0.25% sodium lauryl sulfate. The dissolution behavior of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was basically the same and sustained release in 48 h. Three batches of the factories (factory 2, factory 3, factory 4 and factory 5) appeared to be similar in dissolution behavior, indicating similarity in dissolution behavior in most factories. Two of the three batches from factory 1 appeared to be not similar in dissolution behavior of liquiritin and glycyrrhizic acid. The dissolution data of the effective ingredients from different factories were same in fitting, and Weibull model was the best model in these batches. Fuzi Lizhong pill in 15 batches from 5 factories showed sustained release in 48 h, proving obviously slow releasing characteristics "pill is lenitive and keeps a long-time efficacy". The generally good dissolution behavior also suggested that quality of different batches from most factories was stable. The dissolution behavior of liquiritin and glycyrrhizic acid in different factories was different, suggesting that the source of medicinal materials and preparation technology parameters in five factories were different.

SELECTION OF CITATIONS
SEARCH DETAIL